If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-88=0
a = 10; b = 0; c = -88;
Δ = b2-4ac
Δ = 02-4·10·(-88)
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{55}}{2*10}=\frac{0-8\sqrt{55}}{20} =-\frac{8\sqrt{55}}{20} =-\frac{2\sqrt{55}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{55}}{2*10}=\frac{0+8\sqrt{55}}{20} =\frac{8\sqrt{55}}{20} =\frac{2\sqrt{55}}{5} $
| y+15=57 | | 7+a/11=9 | | 120+120+x=360 | | -2(4-5x)=52 | | x=÷5x | | 8+7x=113 | | .2(x+4)=x+10 | | 9+4p=2p-1 | | k-16/3=-5 | | .2x+62+.2x+34=180 | | 20+k/39=21 | | x+x+20+20x-20=180 | | 2d+9=15 | | n/13=96 | | 119+119+x=360 | | k/26=74 | | 119+119+1x+2x=360 | | 3x+0,25x+0,2x=207 | | 140=20n | | 6(s-1)=-4s-12 | | n-(-70)=154 | | n-(-45)=115 | | -6(t+4)-2=-5t-12 | | 0.2r+.75=0.5r | | x2-9x+11=3x | | 8x-3+95=180 | | (x+12)^2=1 | | 2m+16=4+6m1111 | | 36x-2+110=180 | | q2=21 | | 25•h=175 | | 4z+6=10+2(z+3) |